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Wall and Gravitational Effects on the Fine Structure 
of Interface Layers at Two-Phase Coexistence: 
Some Rigorous Results 
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A rigorous inequality is derived relating density gradient, interface thickness, 
transverse correlation length, and distance of the interface from the wall in the 
presence of an explicit gravitational (resp. wall potential). The results are 
relevant to various possible scenarios, e.g. (critical) wetting, drying, roughening, 
free interfaces (i.e., far away from a wall). Attention is concentrated on the struc- 
ture of the liquid gas interface in a gravitational field. Results seem to indicate 
that the usual intuition concerning the fine structure of the liquid-gas interface 
(e,g., the capillary wave picture) cannot be entirely correct. The predictions are 
particularly puzzling in space dimension two. The results are physically inter- 
preted, giving a more refined picture of the interface layer. 

KEY WORDS: Interface structure; wall effects; wetting; roughening; trans- 
verse correlation length. 

1. I N T R O D U C T I O N  

There  has been much  interest  in the na ture  of the t rans i t ion  zone between a 
l iquid and  its v a p o r  in equ i l ib r ium (or, more  general ly,  the interfaces 
between the var ious  componen t s  of, e.g., a m u l t i c o m p o n e n t  fluid), in par -  

t icular  when it became clearer  in the mid-1970s (see e.g., Refs. 1 and  2) tha t  
a flat l i qu id -gas  interface seems to exhibi t  qui te  del icate  p roper t i e s  in the 
l imit  of  a vanishing exter ior  g rav i t a t iona l  field. Accord ing  to the so-cal led 
"capi l la ry  wave picture ,"  a flat f lu id-f lu id  interface canno t  be ma in t a ined  in 
zero gravi ty ;  the interface s tar ts  to osci l late with the log of the a rea  of  the 
interface. These quest ions  have been cons idered  in, e.g., Refs. 1-6 and  14. 
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A little later these and related problems were approached from a 
different direction, concentrating on the derivation of rigorous bounds of 
various quantities of physical interest, e.g., the two-particle correlation 
function, p(=)(rl,r2)-p(rl).p(r=), in inhomogeneous fluids (see, e.g., 
Refs. 7-9 and, more recently, Ref. 10). The main tool in Ref. 7 was a 
special version of the Bogoliubov inequality, 

]<{A,B}>12<<.~<A2>.<{B, {B, Jg~} } > (1.1) 

where A, B are real, localized observables, ~ is the Hamiltonian,/~ is the 
inverse temperature, and the Poisson bracket on phase space is given by 

{A, B} := • (OriA ~ p , B  - -  OriB Op, A) (1.2) 
i 

With A and B suitably chosen, we were able to supply a rigorous lower 
bound for the density-density correlation function. 

In the above papers we studied self-maintained inhomogeneities, 
namely in the absence of an exterior field. Since, as already mentioned, 
gravity seems to play a key role in stabilizing, e.g., the liquid-gas interface, 
we treat in this paper explicitly the case of a fluid at two-phase coexistence 
in an exterior field, which contains as special situations both the linear 
gravitational field plus an explicit container bottom and various kinds of 
extra wall potentials. 

The bulk of the paper consists of the derivation of a seemingly power- 
ful inequality (given in Section 5). In one of its formulations it relates the 
density difference of the two phases in coexistence, the interracial thickness, 
the distance of the interface from the wall, the transverse correlation length 
(i.e., parallel to the wall), and the wall (gravitational) potential with one 
another and holds in all dimensons d>~ 2. It enables us to study various 
scenarios, e.g. (critical) wetting, drying, roughening, and free interfaces. 

In this paper we concentrate on the liquid-gas interface in a 
gravitational field, treating the cases where wall effects are dominant 
elsewhere. Since our (as far as we can see) rigorous results seem to indicate 
that the usual intuition stemming from models like the caillary wave 
picture cannot be entirely correct, we try to interpret our findings 
physically in Section 6, developing a different picture of the interface 
region. We furthermore touch upon the particularly puzzling situation in 
space dimension two. 

2. T E R M I N O L O G Y  A N D  N O T A T I O N  

The Hamiltonian is given by 
1 

Jt~ :=~i  [Pz/2m+v(ri)] +~ i~ju(r~-rJ) (2.1) 
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where we restrict ourselves for simplicity to a one-component  fluid, v(r) is 
the exterior potential u(r~), r o = r i -  rj, with u(r)  = u ( - r )  a pair potential. 
While our approach can possibly be extended (after some modifications) to 
the Coulomb, i.e., plasma case, we develop in this paper only the short- 
range case, i.e., we assume 

f I(O~)=u(r)l .  [rl2 d~r<  oo (2.2) 
Irl > / a  

= 1 ..... v, with v the space dimension, and for some a > 0, that is, we give a 
condition at infinity, making, however, no restriction on the strength of the 
possible singularity at r = 0; even potentials having an additional hard core 
are admitted. For simplicity we assume the exterior potential v(r) to 
depend only on one of the coordinates, which we denote by z. Further- 
more, v(z)  has to fulfill some lower boundedness condition in an infinitely 
extended system with respect to the z direction (which we do not openly 
specify at the moment)  in order for the system to be stable. Further con- 
ditions on v(z)  will be imposed as needed. 

The following quantities of statistical mechanics will be of relevance 
below: 

The one-particle density 

p(r) :=  ( n ( r )  >, n(r) :=Y'fi(r-ri) (2.3)  
i 

the microscopic momentum density 

p(r) := ~ Pi fi(r - ri) (2.3) 
i 

the total momentum 

P :=fdVrp(r)=~pi 
i 

and the density~tensity correlation functions 

( n ( r ) - n ( r ' ) )  - ( n ( r ) > -  ( n ( r ' ) )  

= <fin(r). f i n ( / ) >  

= p(2)(r, r')  -- p ( r )  p ( r ' )  + p ( r ) .  f i ( r - -  r ')  

= p~)(r ,  r ')  + p(r )  fi(r - r ')  =: H(r,  r ')  (2.4) 

It will turn out in the next section that as an object standing within 
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Poisson brackets, the overall momentum P is not really well-defined. So we 
introduce a localized version: 

PR := f d ~r p(r) fR(r) = ~'. PifR(ri) 

fR(r) := f(Irl/R) 

1 for s~<l 

f ( s )=  0 for s />2 

smooth in between 
and monotone decreasing 

(2.5) 

3. A GENERAL RELATION BETWEEN DENSITY PROFILE, 
TRANSVERSE PAIR CORRELATION, AND EXTERIOR FIELD 

Since the general strategy has already been exhibited in Refs. 7 and 10, 
we make only some short comments as to the approach in general and 
concentrate on the additional terms showing up in the calculations in the 
presence of an exterior field. We have in a first step 

- S z p ( r )  = ({n(r) ,  p z } )  = ({fin(r), pz})  (3.1) 

For various reasons (the Bogoliubov inequality holds in general only for 
local quantities A, B) we replace the overall momentum in the z direction 
pz by its localized version: 

-Szp(r  ) = ({fin(r), P~} ) (3.2) 

provided that Irl < R. 
We now exploit the assumed translation invariance in the v - 1  

directions transverse to the applied exterior field by substituting 6n(r) by a 
certain average with respect to the transverse directions. That is, we 
integrate fin(r) over a ( v -  1)-dimensional sphere of radius R centered (for 
simplicity) at the origin, while in the z direction we smear the density with 
an (in principle) arbitrary test function g(z) with compact support, which 
in the end we will choose to be localized around any z value we want. We 
divide this quantity by the volume of the sphere, i.e. 

FIR(g ) := [VR[ 1 f dz g(z) f as v-1 fin(s, z) (3.3) 
VR 

where s denotes the v -  1 transverse coordinates. [The reason for the 
smearing with respect to the z coordinate will become apparent below. It 
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serves to avoid artificial singularities of the type 6 ( z -  z), 6 now being the 
6-function.] 

Due to translation invariance with respect to s we have, provided that 
supp g c  {Izl ~ R } ,  

--~?zP(g) := - f  dz g(z) c3~p(r) = ({nR(g), P~} > (3.4) 

to which we can now safely apply the Bogoliubov inequality (1.1), yielding 

[~zp(g)]Z~fl<nR(g) .nR(g) ) .  ({P~,  {P~, ~ } } >  (3.5) 

The main computational task consists in estimating the two terms on 
the rhs, in particular their R dependence for R ~ oo. The first term, i.e., 
(nR(g).nR(g)> can be estimated as in Ref. 7 (to which the reader is 
referred): 

(nR(g)-nR(g)> = V~ 2 f f  dz dz' g(z) g(z') 

X fist < R ds f~s'~ < R ds' n (z , z ' ,  l s - s ' l )  

VR 1 f f  dz dz' g(z) g(z') 

• s't < 2R d ( s - s ' )  IH(z,z', I s - s ' l ) l  (3.6) 

With 
H(r, r') = p~)(r, r') + p(')(r), cS(r - r') 

s12 := t s - s ' l ,  and 0v, f2v the area and volume of the v-dimensional unit 
sphere, we get 

(nR(g) .nR(g)> 

<<. (Ov_ ,/f2~_ ,) fl dz dz' g(z) g(z') 

• ds12 Ip~)(z, z', Rs12)[ s~ 2)+s (,,-1)p(g) (3.7) 

This estimate will be made more quantitative in the following by inserting 
explicit expressions for, e.g., H(r, r'). But before doing so, we estimate the 
second term, which is a much more tedious task, but since most of the 
calculation has already been done in Ref. 7 for the zero-gravity case, we 
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will only make comments as to the additional terms showing up in the 
presence of an exterior potential. 

The inner bracket {P~, W} now reads 

{~ P~fR(ri)' ~ }  

= 1/m .~ (pZ)20zfR(ri)+ ~ pZi Pi~ a~f,~(r,) 

- ~ fR(ri) aZu(r,k)--~.fR(ri) ~3fv(ri) (3.8) 
i # k  

where a runs over the v - 1 transverse directions. The double bracket yields 

1/m. ~ [terms containing uneven powers of p~ resp. p~] 

+ I /m.~ {3(pZ) z [O~fR(ri)]2+ ~,, (p~)2 [c~fR(ri)]2} 
o~ 

- 1/m .~ (p;)2fR(r,)(a~.)2fR(r,) 

+ ~ {(af) 2 u(rik)[f~(ri)--fR(ri)fR(rk)] 
i # k  

+ azu(rik) fR(ri)" c~f fR(r,)} 

+ ~ [O~v(r~)'fR(r~)" a~fR(r~) + (Oz)2 v(r~) f~(r~)] (3.9) 

This lengthy expression becomes much simpler by taking its expec- 
tation value, whereupon the first term vanishes identically under the 
assumption that in equilibrium the momenta are distributed according to a 
Maxwellian. To eliminate some further nasty terms, we use the following 
trick (already employed in Ref. 7). For equilibrium states the following 
holds: 

< ,~  af,,(r ,~ ) . f R(r ,) . af f R(r ,) > 

- 1/m. <~ (p~)2 {fR(ri)(a~)2 fR(r,) + [aJR(ri)]2} 1 
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Inserting this into the expectation value of (3.9), we arrive at 

( ae}}> 

= 1/m. 3(p~)2 [OzfR(r~)]2 + y, (p~)2 [O~fR(r~)]: 
~ x = l  

Integrating over momenta,  inserting distribution functions, and exploiting 
the symmetry of u(rik) and the pair distribution function yields 

LHS of (3.11) 

=[3 i f  dVr {3[CqzfR(r)]Z+ ~, [c3 fR(r)]2} p(r) 
o~ 

+ 1/2 f f  dvr dv r' (0z) 2 u(r)[fR(r + r') - f R ( r ' ) ]  2 p(2)(r + r', r') 

+ f dvr (~z) 2 v(r). f2(r) p(r) (3.12) 

Exploiting the special form of fR(r) [cf. (2.5)] and the assumption 
(2.2) about the pair potential u(r), we can, as in Ref. 7, estimate the above 
expression in several steps: 

(i) [fR(r+r'~ ~ . 2.< , --JR(r)] --~ Irl2/R 2. (sup ]0fl )2 
r 

(ii) 1/2 ff  d~r dVr ' (O~)2 u(r)[fR(r +r')-- fR(r')]2 p(2)(r +r ', r') 

~< 1/2 f dvr I(0~) 2 u(r)l .  Irl2/R 2. (sup 10fl) = 

x fKdvr' p(2)(r + r' , r') 

(with K : =  { I r '+  rl < 2 R }  vo {Ir'l < 2 R } )  

~< R v- 2.2Vg?v(SUp 10fl )z 

x f dVr sup p(2)(r + r', r'). lrl 2 I(Oz) z u(r)l (3.13) 
r '  

822/50/3-4-18 
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where the integral in the last line is finite due to assumption (2.2) provided 
that the integrand is locally integrable at coinciding points (i.e., for r -+  0), 
which is a natural  assumption,  since one expects p(2) to vanish very fast at 
r = 0 for highly repulsive pair  potentials 2 s.t. the possible singularity of u(r) 
at r = 0 will be balanced by the vanishing of p(2). 

(3.14) 

(iv) f dVr (~z) 2 /)(Z)fR(r) p(r) 

~+2R 
~<R v-I  - 2 v - l O v _ l  sup p( r ) -  2R ]({~z)2 /)(Z)] dz 

To make the expressions below more  transparent ,  we make the 
following abreviations:  

C~ : :  2rOy(sup ]Sft) 2 f d"r sup p(Z)(r + r', r ' ) - ] r ]  2 ](Sz) 2 u(r)] 
r' 

Cz := 2vg2v f dVrI3(Szf)2-}-E((~f)21 (3.15) 
L 

C3 : = 2 v - l o ~  l 

Putt ing now all the pieces together,  we arrive at the following general but  
not  yet part icularly t ransparent  estimate (supp g c { [z[ ~< R}) :  

[azp(g)] 2 </~ [(o~ 1/o~ ,) f f  dz dz' g(z) g(z') 

fo r v--2 • ds12 Ip~)(z, z ,  ~ ,= )1  S12 

+ R (v 1)g'2vllp(g)] [Rv-2Cl_{_ RV-2fl-l sup p(r).C2 

1(8z) 2 v(z)l dz.  C3 (3.16) 

2 We always tacitly assume that a possible hard core is shielded by a smoothly diverging 
potential in order that p2(r, r) u"(r) remains integrable at the singularity, i.e., u(r) = oo for 
Irl <~a, u(r) smoothly to +oo for Ir[',,a (e.g., of L-J type). For further remarks see the 
Appendix. 
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In the following section we will bring the expression within the first 
square bracket into such a form that a variety of quantitative results can be 
inferred from the above inequality. In doing this we will take advantage of 
the complete freedom of the smearing function g(z) and the scaling 
parameter R, which we will usually take as large as possible. 

4. THE T R A N S V E R S E  PAIR CORRELATION FUNCTION 

We now calculate the expression within the first square bracket of 
(3.16) in more detail. There are two typical modes of asymptotic behavior 
of H(z, z', s12) for s12 large, i.e., exponential or polynomial decay. General 
folklore discriminates these two possibilities by the saying that in the 
former case the correlation length ~ r is finite, while in the latter case it is 
infinite, and sets this statement in relation to whether the system is at the 
critical point or away from it. But real life is not as simple. So, since it is 
our impression that the above sketchy statement represents a widespread 
belief, we first dwell on this point a little. 

The correctness of the above picture depends critically on the range of 
the pair potential. There are rigorous calculations showing that for poten- 
tials having roughly a power law decay at infinity (which can be arbitrarily 
fast!) the bulk correlation function H(r-r ' )  decays asymptotically exactly 
as the potential itself, namely as some inverse power. This has been proved 
for zero gravity (and in the single-phase region) in, e.g., Ref. 11. For  lattice 
gases and finite-range potentials an exponential decay is, however, known 
to hold away from criticality, while for power law interactions, even in the 
presence of an exterior field, H decays again only like an inverse power (see 
Ref. 12). One can learn from these findings that an exponential clustering, 
suggested by heuristic arguments, is by no means a universal phenomenon 
away from the critical point. 

From the above it seems sufficient to discriminate among the following 
cases: 

Ip~(z, z', s12)1 

constH. 

s12 ~ exp( -S lz / r  Cr<  oo 

(1 +s12) ~ ( i ) ~ > v -  1, (ii) e = v -  1, 
~T ~ OO 

s{2 ~ (iii) ~ < v - 1, 

(4.1) 

Inserting this into the first square bracket of (3.16), denoted b y / ,  we get: 
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I<~ 

• ds Is ~' exp(--S/~T)] s ~ - Z + f 2 ~ l j p ( g )  , 

(i) R (v ~) d s ( l + s )  ~s v-2 

(ii) R -(v ~ ) l n ( 2 R + l )  

(iii) R ~ dss  ~-~+2~ 

IT< 

"constH'Ov-1/f2v-1 "I~ g(z)]  2 

+ R  -(v 1)(2~-j lp(g  ) 

(4.2) 

In a last step we introduce the following abbreviations: 

C4(~r ) :=cons tH '0v  1/f2v 1" dsexp(_S/~T)  S(V 2)-~ 

C4(~176 : = c o n s t H ' 0 v - j f 2 v  1 

C5 :=0;-21 

(4.3) 

Remark. It is perhaps interesting to note that the scaling behavior in 
(4.2) is basically the same for exponential and polynomial decay of the pair 
correlation if cr > v - 1. The borderline case seems to be c~ = v - 1. 

5. ESTIMATES OF DENSITY G R A D I E N T  A N D  
TRANSVERSE PAIR CORRELATION 

We now make use of our freedom in the choice of the smearing 
function g(z). We choose it to be simply 

g(z) := S1 for z l < z < z 2  (5.1) 
elsewhere 

which implies 

a~P(g )=p( z2 ) - -p ( z , )  

I[~ p(z) p ( g ) =  dz<~ sup p ( z ) . ( Z z - Z l )  
Z l ~ Z - < Z  2 

I g(z) = z2 - -  z 1  dz 

(5.2) 



Interface Layers at Two-Phase Coexistence 747 

With the abbreviations 

supp(r)=:p,, z2-zl='z21,  
r 

sup p(z) =: P12 (5.3) 
Zl <:z<:z 2 

we now give (3.16) its final form. 
Central estimate : 

[ p ( z 2 ) - p ( z , ) ]  2 1 
fl R ' - 2 ( C ~  q - f l - l p s C 2 ) q - R V - 1 1 2 R 2 R  [ (0z )  2 V(Z)I d z .  C 3 

I R (v 1)[z22C4(~T)'q-Z12P12C5"], ~T < 0(3 

41  (i) R ~ , 

(ii) R (" - l ) [ ln(2R+ l ) z22C4nt - z12P12C5] ,  

(iii) R-~z~z f] dssV (~+2)C4+ R-(V-1)z12p12Cs, 

~ > v - 1  

~--= V-- l 

C~<V--I 

(5.4) 

provided that R > sup{lz2l, IZl[ }. 
This is the central result we will exploit in the rest of the paper. All 

occurring constants can in principle be computed. We begin with the case 
~ r <  oo, R --+ c~. 

5,1. ~jT< (30, R ~ o o  

Provided that 

f 
2R 

lim I(~?~) 2 v(z)l dz < oo 
--2R 

we can neglect in the limit R ~ oo the first term in the denominator on the 
lhs of (5.4) and have 

[ p ( Z 2 ) - - p ( Z 1 ) ]  2 

f 
+oo 

~3 I(~z)2 V(z)[ dzC3(z~2C4-k z12P12C5) 
--09 

(5.5) 

This a priori inequality has to be fulfilled in the case of an exponential 
decay of the transverse pair correlation (where the main dependence on ( r  
is contained in the constant C4). Furthermore, we see again that a density 
gradient is incompatible with exponential clustering in case of an 
everywhere vanishing exterior potential. 
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More interesting is the following situation, which leads immediately 
into one of the most exciting areas of present research efforts, connected 
with "wetting," wall effects, etc. 

5.2. Interfaces in the Presence of a Linear Gravi tat ional  
Potential ,  v(z)=a.z, plus Wal l  Effects 

The case v(z)=a.z ,  i.e., the "usual" gravitational field, displays 
various remarkable aspects. First, it is a special merit of our approach that 
the exterior field enters only in the form of its second derivative (in 
contrast to the standard expressions of fluid physics, where it is the first 
derivative). Second, a linear field is not lower bounded s.t. statistical 
mechanics in a bottomless container becomes obscure. Hence we place a 
container bo t tom at z = - L ,  i.e., consider the fluid to be confined to the 
half-space z > - L .  (Situations like these will be treated in more detail in a 
parallel paper about  fluids near a wall.) Walls will be conventionally 
introduced into our scheme via extra exterior potentials being infinite for 
z < - L .  In any case, as long as we keep the R of our formulas smaller than 
1L, our above estimates can be applied without any change, with v(z) now 
completely dropping out (in the case of an ideal rigid hard wall). We have 

for { r <  oO, IZl,2I<�89 

[p(z2) -- p ( z , ) ]  2 ~< ft. 2 L - 1 ( C ,  + fl-lp~,C2)(z22C 4 + z12P,2Cs) (5.6) 

This is a remarkable result. Assume, for example, that the exterior 
thermodynamic parameters are so chosen that, e.g., the liquid can coexist 
with its vapor. Then in the presence of the gravitational field and the con- 
tainer bot tom a well-localised liquid-gas interface will form, say around 
z = z0. Choosing now z2, zl to be z positions where the system attains its 
bulk values (to a certain degree) for a liquid or a gas, 3 i.e., z2=zt, zl = Zg, 
p2=pt, and pl=pg, (5.6) supplies us with an exact relation between 
(Pl-  pg)2, L, and [ z t -  Zg[! 

With L representing a macroscopic distance, by adjusting the thermo- 
dynamic parameters we can choose it as large as we want while pinning the 
interface at a fixed z value z o. With (p~-pg) a fixed value, L - '  becoming 
arbitrarily small, we observe that the interface thickness [z~-Zgl has to 
become very large with increasing L in order that (5.6) remains true. 4 That  
is, in a linear gravitational field the interface becomes more and more 
diffuse with increasing distance from the bot tom of the container. This does 

3 For example, the "1(~90" thickness (cf. Ref. 5, p. 180). 
4 Provided that C4(~r) is not singularly dependent on L (cf. Section 6) and that, e.g., C1 can 

be chosen independent of L for a wide range of macroscopic L's (see Note added in Proof)! 
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not seem to be in accord with our usual intuition. Hence, if this situation 
does not prevail, the assumption ~r  < oo must be wrong! 

A way out is to abandon the assumption of an exponential decay 
parallel to the interface (resp. the wall). Inspecting again formula (5.4), we 
see that case (iii) with a polynomial clustering of the pair correlation, 
which goes in leading order with an exponent - cq  ~ ~< v -  2, yields a result 
different from (5.6): 

Observation. For ~r = o% c~ ~< v -  2, we have 

[,O(Z2)-- p(Zl) ] 2 

] <~fl Z~2 dssV-(~ [.--] (5.7) 

5.3. Main Conclus ion  

The above observation indicates that in the case where the interface 
does not become more and more diffuse with increasing distance from the 
bottom of the container, which should be prevented by the presence of a 
linear gravitational field, the pair correlation function can only decay with 
a polynomial rate parallel to the interface, given by a power - ~, e ~< v - 2 ! 

Remarks. Similar observations can be made for other situations. A 
case in point is the wetting of a wall; for this case we refer to, e.g., Ref. 13, 
where arguments of a different kind are given, pointing, however, to 
perhaps related phenomena. Furthermore, our reasoning carries 
immediately over to crystals in coexistence with a vapor or liquid of the 
same species. By substituting the continuous symmetry parallel to the inter- 
face with a periodic one, (1~ we get estimates that hold below (resp. above) 
the "roughening temperature." This will be studied in more detail 
elsewhere. 

6. A PHYSICAL INTERPRETATION OF THE RESULTS, 
SOME QUANTITATIVE ESTIMATES, AND THE SPECIAL 
CASE: SPACE D IMENSION v = 2  

In order to judge the sensitivity of the above estimates, one first has to 
make some quantitative checks of the various constants occurring in, e.g., 
(5.4) [resp. (5.6)]. It is reasonable to take as appropriate unit of length the 
angstrom or a typical interatomic distance a in the fluid. For  argon, a is 
3.4 • at 84 K; measured in a units the particle density in the liquid is then 
~0.76 (cf., e.g., Ref. 15). 
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With respect to this length scale, the constants C1,2,3, 5 (resp. their 
various combinations) (together with /~) occurring in, e.g., (5.6) are all of 
order one, O(1), More interesting behavior is seen in C4(ir) [see (4.3)]. It 
is advantageous to extract the transverse correlation length i r from this 
expression. One gets 

C4(IT) = const, i~  -1)-~ , const = O(1) (6.1) 

with ~ stemming from IH(z,  z', s)] < e x p ( - s l i t ) I s  ~. 
With (6.1) one can now give expression (5.6) a simple transparent 

form, which is most useful in studying all sorts of scaling properties (e.g., 
near T,, T,., approaching the bulk coexistence curve from the one-phase 
regime, etc.). We get 

(Ap)2 ~< const. L - l i ~  1)- :t zJz2 ( I T <  (Z)!) (6.2) 

where the constant is O(1)5 and where we can safely drop the contribution 
linear in Az. For large L this contribution becomes negligible, since only a 
diverging Az  or i r  can compensate the vanishing L -I  for L large. A rough 
quantitative check shows that (6.2) yields reasonable results. Inserting 
typical values for PL, the constant, Az, and L (e.g., away from criticality, 
Az is usually a few angstroms), one sees that i v  is in the mm-regime, a 
value also predicted by capillary wave theory in the earth's gravitational 
field (in this picture i v  is expected to be of the order of the so-called 
caillary length; cf., e.g., Ref. 5). 

Thus, the orders of magnitude predicted by both theories are more or 
less the same. But the discrepancies with respect to the physical content are 
nevertheless striking. As long as we have a finite transverse correlation 
length, (6.2) tells us that far from the container bottom, i.e., L 1 ,~ 1, either 

T or Az or both have to acquire a marked dependence on L, approaching 
oo with L ~ ~ (remember that a linear gravitational field is applied s.t. we 
should be always outside the regime of finite wetting). We do not know 
whether such a dependence on L has ever been experimentally investigated. 
In any case, as far as Az is concerned, we think this dependence should 
have been observed anyway. All experimental data, however, seem to be in 
accord with an interfacial thickness of only a few angstroms. So, for the 
time being, we expect I7- to be the critical candidate for a singular depen- 
dence on L (provided it is finite at all!). 

To clarify this point, we sketch briefly the picture underlying the 
capillary wave approach (as designed by Buff et aL (16) and extended by, 
e.g., Weeks./2)) We think the crucial ingredient in this approach is the 
assumption that the interface behaves like a taut (basically simply connec- 
ted) membrane similar to a drumhead, dividing unambiguously the liquid 

5 See Note added in Proof. 
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from the gas phase. This has the physically far-reaching effect that in the 
case in which one superimposes an arbitrary oscillation on the equilibrium 
position of the membrane, every element of liquid contributes with a 
positive potential energy, irrespective of whether it is moving up or down. 
One arrives at the following expression for the work done (cf., e.g., Ref. 5, 
p. 116): 

(PL PG)mgzdz ab(1 �9 (6.3) 

where for, e.g., ~(s)< 0 the corresponding fluid element has to be elevated 
at least to the height z = 0, which is the reference level of the potential 
energy, thus consuming a positive amount of potential energy. A further 
consequence of this model is that the gravitational constant g governs the 
range of transverse correlation (together with m and ab), making iv  finite 
and independent of L for large L. 

Remark. One should, however, note that in the above situation, 
where one is not primarily interested in wetting and wall effects, the 
exterior gravitational field is usually only included in a cursory manner 
into the calculations, the whole treatment being restricted to an immediate 
neighborhood of the interface itself. 

On the other hand, a linear gravitational field drops out completely 
from relation (6.2) if one stays away from the container walls (it may only 
have a small effect in altering the bulk densities a little). With Az remaining 
microscopic for L becoming macroscopic, ~r necessarily has to diverge 
with increasing L (or is ov anyway). 

Conclus ion .  The (exact) estimate (6.2) is not in accord with the 
predictions of the capillary wave model! 

Particularly puzzling is the case of space dimension v = 2. Inspecting 
relations (5.4) and (5.7), we see that not even a polynomial clustering, be it 
arbitrarily week, can make the rhs of (5.4) and (5.7) nonvanishing for 
L ~ ~ unless Az diverges also with L! Invoking some abstract machinery, 
one can show hat the same holds for the weakest form of transverse 
clustering one can think of (cf. Ref. 7, final section). Thus, we have the 
following: 

Observation. For space dimension two a linear gravitational field 
seems unable to stabilize a finite interface thickness with increasing distance 
of the interface from the container bottom. If one assumes a polynomial 
clustering, i.e., H ( s ) ~ s  -~ asymptotically, the interface thickness increases 
> L=/2. 
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Provided the above conclusions are correct, one has to develop a 
picture of the interface region that deviates from the drumhead model at 
least with respect to the finer details. As a hint of where modifications are 
perhaps appropriate, we note the following observations: 

(i) It is just the linearity of the gravitational field that was respon- 
sible for its completely dropping out from the above calculations far from 
the container walls. 

(ii) It is just the assumed tautness of the membrane that has the 
effect that in (6.3) even a piece of liquid moving down contributes with a 
positive potential energy, since the only way to realize this motion within 
the capillary wave model is to transport the piece of liquid to the level 
z = 0. This has the effect that one cannot have oscillations of the surface 
with negligible potential energy, thus making the transverse correlation 
finite. 

We now invoke a slightly different picture of the fine structure of the 
interface region. Since this paper reports on rigorous results, we present 
only a rough outline of our ideas, which we plan to elaborate in more 
detail in a forthcoming paper. We assume the interface layer to be a 
statistical subsystem of finite thickness in contact with, so to say, two large 
reservoirs, i.e., the bulk liquid and the gaseous phase, and containing, as a 
typical transition zone, a sizable amount of (quasiliquid) clusters of atoms, 
which are permanently exchanged with the two bulk phases. 

In a linear gravitational field the following (quasi) collective motion 
now suggests itself: There are liquid' clusters moving up and down, i.e., 
reentering the liquid or diffusing into the gas phase (with an additional 
potential coming from the liquid phase, stabilizing the interface as a 
whole). A cluster moving up consumes a certain amount of potential 
energy, a cluster moving down sets a certain amount free. The linearity of 
the exterior gravitational field has the additional peculiar effect that these 
amounts are independent of the vertical location of the clusters. To put it 
in a nutshell, one can visualize a long-ranged horizontal collective motion 
with clusters moving up and down while the gains and losses of the 
respective potential energies nearly balance each other s.t. the overall 
potential energy of the excitation is almost zero. 

In concluding this paper we briefly comment on investigations of the 
interface structure via computer simulation. There exist various reliable 
studies (e.g., Ref. 15). Unfortunately, the diameter of the simulated box 
remains microscopic (typically a few o) s.t. the (large-L) behavior is 
beyond the reach of these investigations. But the asymptotic behavior of, 
e.g., H(s) may be difficult to check anyway, since one has to be prepared 
for the possibility that the above nonexponential contribution is very small. 
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On the other hand, Fig. 12 of Ref. 15 displays the typical distribution of 
clusters we expect in the interface region s.t. the computer results of Ref. 15 
may suport our picture as well as the caillary wave model. 

A P P E N D I X  

In this appendix we address the class of interparticle potentials admit- 
ted in expression (3.13) in more detail. For  most of the results after the 
estimate (3.13) it is essential that, e.g., p~2)(r+r',r')]r] 2 ]uzz(r)] remains 
locally integrable at coinciding points, i.e., r ~ 0, resp. at the contact 
singularity in the case of a hard core. 

By a standard procedure of statistical fluid mechanics one realizes that 
one can extract a factor from p(Z)(r, r') s.t. 

p(Z~(r, r ' )=e /~u(r-r'~ f(r, r') 

with f smooth to some degree across a singularity of u. Two classes of 
potentials are of relevance: (i) point interactions with a possible singularity 
at r = 0; (ii) potentials containing a hard core part, i.e., u(r)= oo for ]rl < a 
for some a. 

For  class (i) the following natural condition suggests itself: Possible 
singularities of u at r = 0 have to be of the form u(r) to + oo smoothly for 
r ~ 0 [e.g., O(r ~)] s.t. u"(r) is O(r ~-2). Under this proviso u"(r) e u~r) is 
locally integrable in r = 0 .  In particular, all sorts of L-J potentials are 
admitted. 

In the case of a hard core the condition has to be slightly more restric- 
tive. Take, e.g., an "unscreened" hard core, i.e., u(r ) - -oo for Ir] <a ,  
uniformly bounded for Ir] > a. Jump discontinuities of this kind are nasty. 
While u'(r)e u(r~=(-e-U(~))' is still integrable across the contact 
singularity (developing a 6-contribution), this is no longer the case for, e.g., 
u"e u, which contains a nonintegrable distributional singularity. 

The class of potentials we actually have in mind have hard cores 
always shielded by a smoothly diverging repulsive part, i.e., u(r)= oo for 
fr] <a ,  smoothly diverging to +oo for ]rl ~ a  as in (i). 

Taking u(r) from these two classes guarantees that the above 
expression is locally integrable at contact singularities of u. It is 
nevertheless interesting that (at least at first glance) our reasoning does not 
apply to unshielded hard core potentials (which, while being a little bit 
artificial, are an important tool for numerical calculations). Whether there 
is a deeper physical reason for this "defect" shall be discussed in a future 
paper. 
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NOTE ADDED IN PROOF 

Note that the gravitational field still has an indirect effect on the value 
of some of the "constants" as, e.g., CI (cf. its definition in (3.15)). C1 is 
expected to increase a little with L as the molecules deep in the fluid come 
closer together under high pressure. For  reasonable (not extremely large) 
macroscopic L's this effect should, however, be weak so that we are 
allowed to choose constant bounds for a wide range of L's. 
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